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Non-equilibrium phase transitions in one-dimensional 
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$ Research Institute for Materials Science, H-1525 Budapest. PO Box 49, Hungary 

Received 21 April 1995 

AbstmcL A family of non-equilibrium kinetic Ising models, introduced earlier, evolving 
under the competing effect of spin flips at zem tempemre and "west-neighbour random 
spin exchanges, is further investigated. By increasing the range of spin exchanges and/or theii 
strength the nature of the phase uansition 'king-to-active' becomes of (dynamic) mean-field 
type and a Bnt-order tricitical point is located at the Glauber (8 = 0) limit. Comctions to the 
mean-field theory are evaluated up to sixth order in a cluster approximation and found to give 
good results wncming the phase boundary and the critical exponent p of the order parameter 
which is obtained as 8 1 1.0. 

1. Introduction 

Kinetic Ising models were originally intended to study. relaxational processes near 
equilibrium states [1,2]. Later combinations of Glauber and Kawasaki dynamics were 
used successfully in investigating questions about temperature-driven non-equilibrium phase 
transitions [3-51. In a previous paper a class of general non-equilibrium kinetic Ising 
models ("ght) with combined spin-flip dynamics at T = 0 and spin-exchange dynamics at 
T = 00 has been introduced [6], in which, for a range of parameters (other than temperature) 
of the model, a directed-percoiation-like king-to-active phase transition takes place. The 
line of phase transitions have been found to belong to the same universality class as the 
phase transitions occurring in the cellular automaton models introduced and investigated by 
Grassberger er al [7, 81. Numerical studies of other models showing similar types of phase 
aansition have been reported recently [9, 101. 

In this paper we consider a generalized form of NEK~M by allowing for exchanges of 
arbitrary range, R.  The mean-field (MF) limit of NEKIM phase transitions is reached when 
R -+ w and/or the probability of the exchanges, prx ,  relative to the time scale of spin- 
flips approaches infinity. In a systematic generalized MF approach (GMF) [ll-131, besides 
the lowest-order approximation (ordinary dynamic MF, n = 1) the second-order cluster 
equations (n = 2) could also be solved exactly. Numerical solutions have been obtained up 
to sixth order. 

In this way we have found strong theoretical evidence for the conjecture, stemming from 
simulations [6], that the line of king-to-active second-order phase transition points ends at 
the Glauber l i t  (8, = 0, 6 being a parameter of the spin-flip transition rate of crucial 
importance here) with maximal exchange range and/or rate. It is shown here that this end 
point is of first order (hicritical point) and is described by plain MF theory. The relaxation 
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time is obtained as 5 cx 1/16[. GMF results show that with increasing n the critical point 
becomes of second order and moves towards negative values of 6 of increasing absolute 
value. The coherent anomaly method [14, U] has been used to extract the exponent p of 
the order parameter from the results of GMF calculations yielding p = 1.0. 

2. The model 

In WKIM we have started with the general form of the Glauber [I] spin-flip transition rate 
in one dimension for spin si sitting at site i (si = &I): 

(1) wi = r/2(1 +Ss;-lsi+l)(l- psi(si-1 1 +si+l)) 

where y = tanh2J/kT ( J  denoting the coupling constant in the Ising Hamiltonian), r 
(denoted by I/ r in [6]) and 6 are further parameters which can, in general, also depend on 
temperature. When T = 0 is taken then y = 1 and (I) leads to two independent rates: 

pRW 2wtLL = r(i - 6) pan wtlt = r(i + 6) (2) 
responsible for random walk and pairwise annihilation of kinks, respectively. r and 6 are 
constants to be varied. 

The other ingredient of NEm has been a spin-exchange transition rate of neighbouring 
spins (the Kawasaki [2] rate at T = w): 

W;+I = $ ~ e . x [ l  -sisi+~I (3) 
where pa is the probability of spin exchange. P R W ,  pan and per have been chosen as 
normalized to unity, leading to the relation 

= 1 -2r. (4) 
The spin-exchange process induces painvise creation of kinks in the immediate 
neighbourhood of an existing kink k + 3k with probability prx.  From this process the 
ultimate development of an active phase can arise and in [6] we have made the conjecture, 
and found numerical evidence for it, that ~ R W  > pan (i.e. 6 c 0) is necessary for this to 
happen. 

Now we generalize the original NEm model by allowing the range of the spin-exchange 
to vary. Namely, equation (3) is replaced by 

Wi.i+k = $p,tl - sisi+x1 (5) 
where i is a randomly chosen site and si is allowed to exchange with si+k with probability 
pex. Site k is again randomly chosen in the interval 1 < R, R thus being the range 
of exchange. The spin-flip part of the model will be unchanged. We have carried out 
numerical studies with this generalized model in order to locate the lines of king-to-active 
phase transitions. Spin-flip and spin-exchange have been applied alternately at each time 
step, the spin-flip part has been applied using two-sublattice updating, while making I Monte 
Carlo attempts at random ( I  denotes the size of the chain) has been counted as one time-step 
of exchange updating. It is worth mentioning that, besides k + 3k, the process k + 5k can 
also occur for R > 3, and the new kink pairs are not necessarily neighbours. The character 
of the phase transition line at R > 1 is similar to that for R = 1, except that the active 
phase extends, asymptotically, down to 6, = 0. This is illustrated in figure 1, where besides 
R = 1, the case R = 3 is also depicted: the critical value of -8, is shown as a function of 
pex (figure 1, curves a and b). Moreover, -6, as a function of R is also shown at constant 
r = 0.35. The abscissa has been suitably chosen to squeeze the whole (infinite) range of 



Non-equilibrium phase transitions in kinetic lsing models 4507 

1.0 

ACTlVE PMY . '., a . . . 0.2 . 
ISlNG PHASE ... 

0.5 1 .o 
pex R'/(l+R)' 

0.0 
0.0 

Figure 1. Phase diagram of NEUM for &(R, pex)  is 
depicted for: a, R = 1; b, R = 3 as a function of plr 
(with 2r = I - p c x )  and c, r = 0.35 (pex = 0.3) 
as a function of (RI1 + R)4 (full curve). The phase 
boundaries have also been obtained by measuring p(t) ,  
the density of kinks, stafiing from a random initial 
distribution and locating the phase transition points by 
p(?)  a t-= with U = 0.27hO.M. Typically the number 
of lattice points has been 1 = 7.000 with averaging over 
500 independent runs. 

. 

R between 0 and 1 and for getting phase lines of comparable size (hence the power of 4 of 
R/(1+ R) in the case of figure 1, curve (c)). 

Besides the critical exponent a, used in identifying the phase transition points, also the 
other critical exponents characterizing the phase transition have been determined numerically 
around some~typical points (far from the end points) of the phase transition lines for R > 1, 
with the same result as obtained in [6] for the case R = 1: the exponents agree,within 
errors, with those of Grassberger's automata [7, 81. 

On the phase diagrams of figure 1 two non-typical regimes can be distinguished, namely: 
(i) pex sz 0 (figures 1, curves a and b). Here NEKIM's behaviour is getting close to 

that of the plain spin-flip model at T = 0: the steady state is everywhere king-like except 
for the limit-point S = -1, where pan = 0 and the initial kink density is sustained. At 
this specific point the energy becomes conserved with a change in the form of the time 
dependence of correlations from exponential to stretched exponential [16]. Thii, limit will 
not be discussed further here. 

.(ii) pex x~ 1.0 and/or R --f OO (figures I, curves ax ) .   or pex + 1, k = I we 
have concluded in 161 that 8, + -0, though it has been difficult to get reliable numerical 
estimates for the critical exponents of the transition due to the long transients. 

In (ii), after each step of spin-flip ordering, maximal mixing of the neighbourhobd of 
each spin follows, suggesting that a mean-field type situation takes place. It is important 
that according to (4) pex = 1 is approached together with r + 0 and thus pex/  r + 03. 

(As r sets the time scale of the ordering process, its vanishing tendency enhances the effect 
of mixing). The same limit can be reached at fixed pex by increasing R to infinity (figure 1, 
curve (c)). 

We have also checked the decrease of -8, with 1/R numerically at fixed r = 
0.35, per = 0.3 and found, over the decade of R = 4-40, that 

-6, %,2.0(1/R)Z 

reminiscent of a crossover-type behaviour of equilibrium and non-equilibrium phase 
transitions [17], here with crossover exponent k. It should be noted here, that to get 
closer to the expected Sc.+,F = 0, longer chains (we used 1 values up to 20 000) and longer 
runs (here up to t = 5 x lo4) would have been necessary. The former to ensure I >-> R [18] 
and the latter to overcome the long transients present at the first few decades of time steps. 
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In what follows we will always refer to the MF limit in connection with pex + 1 (i.e. 
pex/ r + co), for the sake of concreteness, but keep in mind that R -+ co can play the 
same role. 

3. Mean-field theory and corrections to mean field 

It is straightforward to find the MF equation for the spin-flip model alone (at T = 0). By 
denoting the average spin density by M we get, using (1) 

(7) 
The fixed-point solutions are M' = 1, -1,0 of which the first two are stable if 6 t 0, 
while the M' = 0 solution is stable for 6 c 0, suggesting a (first-order) order-disorder-type 
phase transition at 6 = 0. That the M* = 0 fixed-point is not an antiferromagnetic type can 
be shown by carrying out a two-sublattice MF analysis of the model [19]. First sublattice: 
odd lattice points with average magnetization MI, second sublattice: even lattice points 
with average magnetization M2. The total average magnetization M = (MI + M2)/2 and 
the difference of the sublattice magnetizations A = (MI - M2)/2 obey the following MF 
equations: 

(8) 
(9) 

The solutions for fixed-point A* # 0 are: M* = 0, A*2 = -1 - j. 
0 at the 

same time is: 6 = -1, with A** = 1. Thus we will suppose that the transition at 6, = 0 
is of order-disorder type. A small fluctuation dM around one of the stable fixed-points 
decreases as dM cx with r = l/rlSl. This relaxation time becomes infinite at the MF 
transition point. The corresponding critical slowing down in its vicinity explains the longer 
and longer transients observed during simulations. 

Figure 2 serves to illustrate the MF result in comparison with results of simulation of 
NEKIM. The average density of kinks at f = co is depicted versus S. The MF approximation 
corresponds to figure 2, curve a, with a jump at S c ~ ~  = 0. Figure 2, curve b, shows the 

dM/df = -6rM(M2 - 1) .  

dM/df = -6rM(M2 - 1 -A2) 

dA/dt = -2rA + 6rA(M2 - 1 - A2). 

With values of S reshkted to 1 > 6 > -1, the only possibility to ensure A*2 

0.60 7 

Figure 2. Kink density p in the steady sme 
as a function of 6: a, result of first-order MF 
calculation with a jump at 6 = 0, reflecting 
the fim-order nature of the m i t i o n ;  b, the 
same quantity for the pure spin-flip model: 
p(00) = p ( O ) a t 6 = - l , o t h ~ i s e ~ ( w )  = 
0. c, d. e: FURS of simuladons of NWM, 
seethetext. ' . 

, , ,  
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behaviour of the pure spin-flip model at T = 0: the steady state is everywhere king-like 
( ~ ( 0 0 )  = 0) except for S = -1. Figures 2, curves c-e are results of simulation of NEKlM 
at per = 0.02, pex = 0.9 and pcx = 0.98, respectively. By further decreasing (increasing) 
pex,  the NEm curves get closer and closer to b (or a, respectively). Such behaviour is in 
accordance with our expectations: it supports the MF interpretation of the high-p, part of 
the phase diagram. 

We have applied the generalized mean-field calculation method, or cluster approximation 
[ l l ,  121 in the form applied for cellular automata [13] in order to go beyond the lowest-order 
approximation shown above. 

Steady-state equations have been set up for block probabilities in n = 2 .  . .6th order. 
The system of GMF equations is solvable analytically also for n = 2. 

The n = 2 approximation gives the density of kinks p(m)  as 

. 

3 2  ~ P R W ~ P " " - P R W P ~ ~ - J ~ P ~ ~ +  S ~ R w ~ a n - i p R W ~ a n  3 2  1 3  +pzn-2pRwp;, ,  
p(m) = ~ ~ . ~~~ ~ ~~ .~ 

($P?iw - P R W P m  + P%) 
(10) 

for 6 < 0. For 6 > 0, p(00) = 0, i.e. GMF still predicts a first-order transition for S = 0; the 
jump in p ( w )  at S = 0, however, decreases monotonically with decreasing r, according to 
(10) and (2). 

In order to get the n > 2 approximations, the set of GMF equations can only be soived 
numerically. We determined &e solutions of the n = 3,4 ,5 ,6  approximations for the kink 
density at (i) r = 0.35 (figure 3) and of the n =~ 3,4,5 approximations at (ii) r = 0.05 
(figure 4). As we can see the transition curves became continuous, with negative values 
for 6; (SF denotes the value of 6 in the nth approximation for which the corresponding 
p(00) becomes zero). Moreover, [S;l increases with growing n values. As increasing n 
corresponds to decreasing mixing, i.e. decreasing pex,  the tendency shown by the above 
results is correct. 

Figures 5(a) and 5(b)  show a quantitative-though only tentative-comparison between 
the results of GMF and ,the simulated NEKlM phase diagrams. The obtained GMF data for 6; 
corresponding to n = 3,4, . . . , 6  (r = 0.35) are depicted in figure 5(a) as a function of 
l / (n  - 3), together with results of simulations. The correspondence between n and pes has 
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Figure 4. Kink density p(m) obtained by 

6 GMFforn=3.4.5inLhecaseofr=O.O5 -~o,61 0.4 0.2 - : i ~  0.2 \ 

--. - - - - _ _  '---- . .  \ - -  - - -  _ _  
( 0 )  

0.0 0.0 
0.0 0.2 0.4 0.6 0.k 1.0 0 . 0 , O . Z  0.4 0.6 0.8 1.0 

P'. V(n-3) POX l /h-J) 

Figure 5. Comparison between results o f  simulation and GMF: GMF results for 6, are plotted 
as a function o f  I/(" - 3). while simulation mulls for 6, are depicted as a function of  pcx at 
constmt r. with R = 3 in the case of (a) r = 0.35 and (b)  with R = 1 for r = 0.05. 

been chosen as the simplest conceivable one (note that 8, # 0 is obtained first for n = 4). 
The simulated phase diagram has been obtained without requiring the fulfillment of (4). at 
constant r = 0.35. In this case the 8, = 0 limit, of course, is not reached and a purely 
second-order phase transition line can be compared with GMF results (for n values where 
it also predicts a second-order transition). Simulations for R = 3 have been Found to lead 
to IS,[ values low enough to fit GMF data. The (polynomial) extrapolation of GMF data to 
n + 00 (corresponding to pEx = 0 , i.e. plain spin-flip), also shown in figure 5, could 
have been expected to approach 6 = -1. That this is not the case can be ascribed to the 
circumstances that (i) GMF starts here from a first-order MF phase transition, (ii) which, upon 
increasing n, becomes second order and (iii) the point it should reach for n + 00 is again 
a first-order transition point, discussed shortly in section 2, with quite unusual (and not yet 
completely cleared up) properties. 
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Figure 5(b) shows the n = 3,4,5 results for r = 0.05, which are now compared with 
the R = 1 simulation data. 

The critical exponent p of the order parameter ‘has been determined by processing 
the results of the GMF approximation by the coherent-anomaly method (CAM) [14,15]. 
According to CAM the GMF solution for kink density p at a given level of approximation-in 
the vicinity of the critical point &-is the product of some mean-field behaviour multiplied 
by the anomaly factor a@): 

p(n)  = a(n) (8/6,“ - 1 1 8 ~ ~ .  (11) 
The me critical exponent, p ,  can be obtained by fitting, using the knowledge that the 
divergence of the anomaly factor scales as 

(12) 
as the level of approximation n goes to infinity. More precisely, for the available low level 
of approximations (n < 6), correction to scaling should also be taken into account 

(13) 

a(n) - (6:/6, - I)@+MF 

a(n) = b A{-hdF + c A 8 - 8 M F + l  + . . . 

j 

: 

+*++ 
I f  

. 

Fie 6. The n = 3 results of the 
GMF for p ( W )  wilb r = 0.35 are 

where b and c are constants and the invariant variable 

An = (S,/S2)”’ - (S:/$)”2 (14) 

is used. This new variable was introduced recently [15] to avoid the ambiguity on the 
choice of the independent variable (8 cf 8-l). Using this new variable an accurate estimate 
was given for the critical exponents of the 3D Ising model 1151 and for the exponent B of 
the stochastic rule 18 cellular automaton [20]. 

From our GMF approximation results, as shown on figure 3, we can use the n = 4,5,6 
data for the CAM analysis, while the n = 3 result can be taken to represent the lowest-order 
MF approximation (with 8;’ = 0) for a continuous transition (no jump in p for n = 3). 
For 6, we use the results of the polynomial extrapolation. Figure 6 shows that in the n = 3 
approximation the exponent ,3 = 1.0064 , thus &F. X 1. Graphs similar to that in figure 6 
have been obtained for n = 4,5,6 as well. Consequently, as table 1 shows, the anomaly 
factor does not depend on n. This means, according to (U), that the exponent is estimated 
to be equal to the ‘mean-field’ value p = ,!3,+,~ = 1. 
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Table 1. CAM calculation results. 

n A! a ( 4  

4 2.49043 0.01083 
5 1.81022 0.01074 
6 1.45766 0.01079 

4. Discussion 

Here the mean-field limit of the line of non-thermal phase transitions occurring in a family 
of one-dimensional kinetic king models has been analysed. This line consists of second- 
order Ising-to-active phase transition points which belong to the universality class found 
first by Grassberger et al 17, 81. The first-order endpoint of this line has been found to be 
described by MF theory. Systematic generalized MF theory has been applied to treat bigger 
and bigger blocks of size n exactly in order to be able to depart from this tricritical point. 
Numerically solvable results up to n = 6 have given the support of simulation results, and 
especially have provided a value for thecritical exponent B of the order parameter (density 
of kinks) ,3 = 1, which is in accord with Grassberger's result: p = 0.94 f 0.06. The value 
p = 1 coincides with the MF B-exponent for directed percolation. This is not surprising in 
the case of our n = 3 result which we have used as an effective MF one for a continuous 
transition at 6 = 0. As Grassberger has pointed out [SI in the rate (or MF) approximation 
there is no difference between models leading to the king-to-active transition and directed 
percolation. In this argument, however, the MF equation is written for the kink density (and 
not for the magnetization as in (7)) and has the form: dpldt = 2pp -ZAP', where p and A 
are the reproduction and annihilation rates, respectively. Nevertheless, a heuristic equation 
of a similar type can also be constructed in the present model using p M (PEW - pan) as 
the rate making kink-reproduction effective (a conclusion stemming from simulations). The 
corresponding MF critical value is then 8,"' = 0 and pMF = 1. It is, however, surprising that 
higher-order approximations of GMF have given practically no deviation from the MF value 
of p.  In simulations for branching annihilating random walk with four offspring, Jensen 
191 conjectures a value p = on the basis of simulation results, no theoretical motivation 
appears to exist for this value, however. To decide the question of what the exact value of 
p is in this universality class appears to be a challenging task, and calculating GMF in even 
higher approximations than here would probably be worthwhile. 
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